
AD-A278 847

DTICA ELEC.- i•

S APR 2 9 '.S4

The DataCube Server

Roger E. Kahn, Michael J. Swain, and R. James Firby

University of Chicago
Animate Agent Project Working Note 2

Version 1.0, November 1993

For additional copies, write to:

Department of Computer Science
University of Chicago
1100 E. 58th Street
Chicago, Illinois 60637-1504
U.S.A.])I z'

Thi3 docu,:nnt i.-s teen Gpp:oved
for public telecz and _•ale; its
distribution is Uni'Tci~ie 4 1 05- ••°" •'="• '94-13054

The DataCube Server

Roger E. Kahn
University of Chicago

Department of Computer Science
kahn@cs.uchicago.edu

Michael J. Swain
University of Chicago

Department of Computer Science
swain•cs.uchicago.edu

R. James Firby
University of Chicago

Department of Computer Science
firby~cs.uchicago.edu

November 1993

Contents

1 Using the DataCube Client Class 2

2 Extending the DataCube Server 36

3 The DataPackage Container Class 51

4 Using the dq.global Base Class For DQ Applications 55

5 mres: The Multi-Resolution Image Class 64

Accesion For

NTIS CRA&I
DKI:" TAB 03

Jus ,c. hon

By

Availbi~ity Codes

Avail a;,,dIor
Dist Special

/b - I ii i Il I I I

Chapter 1

Using the DataCube Client
Class

Intro

The DataCube server and client class facilitate the development of real-time
vision systems by allowing you to write distributed programs that can access
the DataCube MV200/MV20 and DigiColor boards in parallel. The DataCube
server is a network interface to a library of Pipelined routines that run of the
MV200/MV20 and DigiColor. The functions provided by the interface include
frame grabbing, Gaussian pyramids, color histogram backprojection, color his-
togram intersection, motion detection from a moving platform, foveated frame
display, and optionally, control of a Directed Perception pan-tilt head. Further-
more, the system is designed to be extendable so that new functions can be
added to the server.

The DataCube client class is a C++ class that provides a function based
application programmatic interface to the DataCube server. To use the Dat-
aCube client class one does not need to be familiar with how the DataCube is
programmed. The programmers interface is simply a C++ class with a set of
member functions. All that one does is call the member functions; the network-
ing and pipelined processing happen behind the scenes.

This system has been designed as a programming interface to a robots visual
system. Consequentially, it must run quickly to provide the real-time function-
ality required by a robot. All of the DataCube routines have been compiled
into a special format called a PAT (PipeOp Altering Thread) that minimizes
the overhead required to run them. Because of this all of the pipelined routines
run as quickly as possible. To further improve efficiency the systems routines are
based on a Gaussian pyramid. The programmer can specify an area of interest
for each level in the pyramid (called an active region) and restrict processing to

2

only be done on that area. When a call to the DataCube returns a processed
image, only the active region at the requested levels of resolution are returned,
thus reducing the load on the network.

Why not just program the DataCube directly?

We have found the three most limiting aspects of the DataCube machines to
be:

"* Any process using the DataCube must be running on a single designated
DataCube host machine.

"* Only a single process can use the DataCube at a time.

"* Pipelined programs are hard to program.

The DataCube server alleviates all three of these problems. Processes con-
nect to the DataCube server via TCP-IP. Only the DataCube server must be
running on the DataCube host. Clients can run on any machine that has a
network connection with the host. This can be especially useful when either the
fastest available machine is not the DataCube host, or when a machine other
than the datacube host has special hardware that must be used.

The DataCube server allows multiple concurrent connections so that many
routines can use the DataCube simultaneously. It is often the case that off-
DataCube processing is required in addition to the processing done on the Dat-
aCube (especially in the development stages). By providing multiple processes
with access to the DataCube, non-pipelined processing can be done in parallel.
Furthermore, since clients can connect from different machines non-pipelined
processing can be distributed to many microprocessors.

The DataCube becomes easier to program in three ways. Firstly, most rou-
tines will not need to have any DataCube code written at all; the server will
provide all the functions needed. Secondly, when DataCube code must be writ-
ten a C++ application programmatic interface to imageflow is provided that:
sets up commonly used paths (like from the camera to a DataCube memory),
automates memory allocation, and keeps track of volitile elements on the Dat-
aCube that a pipe must reset only when some other pipe has corrupted them
(such as look up tables). And thirdly, a standard structure is provided that
simplifies the integration of multiple pipelined routines into a single program;
thus allowing multiple routines to use each others results and allowing a single
application (such as the datacube server) to use many routines.

3

Hardware

Host

The host to the DataCube is the only machine that can directly talk to it. This
will be the machine on which the DataCube server runs and that the pan-tilt
head, if present, is connected to. For faster communications a client can also be
run on the host and the network time lag is reduced, this will be particularly
useful if the host is a sparc-10 with multiple CPU's once DataCube supports
Solaris.

DataCube
The server expects MV200/20 and DigiColor boards to be present with image-
flow installed on the system. The connection between these boards should be
compatible with the following configuration file:

SPCVRate: T60HZ
IRQLevel: 5
MaxEvents: 64
MaxPats: 48
PatMemSize: 786432

DEV: abOO
Base: OxlOOOOOOO
AddrSpace: ADDRA32
IRQVector: OxE4
SPCRole: SPCSLAVE
SPCTerminate: TRUE

DEV: dcOO
Base: 0x80000000
AddrSpace: ADDILA32
IRQVector: OxD8
SPCRole: SPCJHVMASTER
SPCTerminate: FALSE

DIGICOLOR's output MV200/MV20
CABLE: (dcOO.P4, abOO.P7)
CABLE: (dcOO.P9, abOO.P9)
CABLE: (dcOO.P1O, abOO.PO)

MV200/MV20's output to DIGICOLOR
CABLE: (abOO.P5, dcOO.P5)

4

CABLE: (abOO.P6, dcOO.P6)
CABLE: (abOO.P8, dcOO.P8)

Cameras should be connected to the DigiColor composite ports vidO and/or
vidl.

Directed Perception Head

The Directed Perception pan-tilt unit (model PTU) is supported by the server.
All commands that can be sent to this head are available from the client. Angles
can be specified in degrees, radians, grads, pixels, and stepper motor counts.
See the documentation on the class interface to the pan-tilt unit for further
details. This head does not have to be present to use the server.

Khoros
The DataCube server provides a class for operating on images that is based on
the Khoros Visualization and Image File Format (VIFF) (version 1.5). Since
this image class is bassed on the VIFF many of the Khoros library functions
are available. Khoros provides functions in the following categories: arithmetic,
classification, color conversion, data conversion, file format conversion, feature
extraction, frequency filtering, spatial filtering, morphology filtering, geomet-
ric manipulation, histogram manipulation, statistics, signal generation, linear
operations, segmentation, spectral estimation, subregion, and transforms.

Khoros is available via anonymous ftp from pprg.eece.unm.edu, 129.24.24.10,
in the /pub/khoros directory. Khoros has a newsgroup, comp.soft-sys.khoros
that is quite active and helpful.

create a directory for Khoros
setenv $KHOROSHOME to point to the new directory
cd SKHOROSHOME
tar xvf Khoros.basic.tar

Installation

The following procedure should be followed for installation. It is assumed that
the environmental variable SKHOROSHOME points to the directory where
Khoros is installed (if Khoros is not installed see the above section on Khoros)
and that SDQHOME points to the directory where Imageflow is installed. Di-
rectories are created in SKHOROS-HOME and $DQHOME to store the C++
headers for these libraries, hence write permission should be available in both
those directories. A new library will be written to $KHOROS.HOME/lib so

5m • ,am mmm• asm m ms nwuunnmmann ummun • •Ulm

write permission will be needed for this directory as well. A directory should
be chosen to install the server in and the variable SDQSERVER.HOME set to
point to it. Write permission must be available for SDQ.SERVER..HOME. The
environmental variable CC must be set to your C++ compiler and any flags
required by the compiler should be set in the CC variable (for example if using
lucid C++ setenv CC "Icc -XF"). The installation steps are:

cp DQ.Server.tar.Z SDQSERVERJHOME
cp DQServer-doc.tar.Z gDQ$SERVER-HOME
cp khoros.include.diff.tar.Z $DQSERVERHOME
cp DQ.SERVERIJNSTALL SDQSERVER-HOME
cd $DQSERVERIHOME
chmod u+x DQSERVERINSTALL
DQ-SERVERJNSTALL

To run the server, log into the DataCube host machine and go into the
$DQSERVER-HOME/bin directory. Run dq.server with no command line
arguments or run dq..server.bin with the arguments: <log-file> <init-port>
<DQ-config-file> <PTH-port>.

* <log-file> is a file to log errors and commands into.

* <init-port> is the socket port that clients will connect to the server at.

* <DQ-config-file> is the system configuration file used by imageflow, usu-
ally SDQHOME/text/dq/dqsys.cfg.

* <PTH-port> is the port for the pan tilt head, usually /dev/ttya if the
head exists and /dev/null if it doesn't.

These four parameters are optional, with default values of "log", "6123",
"SDQCONFIG", and "/dev/null" respectively. Note <log-file> can be used to
log all client requests, if it is used to do this it can grow rather large and should
be deleted occasionally.

A quick test

To test your setup start the DataCube server as described in the previous sec-
tion. If the server does not start check to make sure that your MV200/MV20
and DigiColor boards are connected as shown in the above example imageflow
config file. While the server is running log into any other machine and go to the
SDQ.SERVER.HOME/bin directory. Run the client test program dq-client.test
<DataCube-host-name> <init-port>. If the test program does not connect to
the server it may be because the server is not finished initializing, let the server
run until it says that it is ready to accept a client and try connecting again. Once

6

a connection is established type "StartDisplay" to begin the display pipe. Af-
ter the display pipe is running type "GrabMultiResFrameAndDisply" to grab a
frame and display it. Next change the number of levels in the pyramid with "Set-
NumLevels 4" and foveate on the center of the screen by entering "Foveate 250
250". Grab and display another frame with "GrabMultiResFrameAndDisply".
A foveated image should appear.

The Client Class

Using the client class

The client class offers many functions that can be used to do image processing
and control the pan-tilt head (if present). These functions are described in
the "Members of the client class" section. The client is declared in the file
"client.H" as a global variable DQclient of type client (this is similar to cout
begin declared as a global in iostream.h). Communication with the server should
be done through this variable, for example:

DQclient.StartDisplay 0;
DQclient.GrabllighResFrameAndDisplay 0; //Grab a frame from the camera

Compiling clients

The following directory structure and variables are assumed:

$DQ.SERVER-HOME/include:
contains all include files for the client and server classes.
$DQ.SERVER-HOME/lib:
contains all libraries for the client and server classes.
SDQHOME
root directory for Imageflow.
$KHOROS_9OME
root directory for Khoros.

To compile a client your application should include client.H. The directories
$DQ.SERVERHOME/include and $KHOROS-HOME/includeC++ should be
in the include path. It should link with libclient.a, libcomm.a libxv-class.a from
$DQ.SERVEL.HOME/lib and libvipl.a, libvutils.a, libvmath.a, libvgparm.a,
libverror.a, and libUofCJKhoros.a from SKHOROSAHOME/Iib.

7

Members of the Client Class

Gaussian pyramid commands

All of the functions in this clawm are based on the gaussian pyramid. In particu-
lar, active regions in each level of the gaussian pyramid can be specified. When
an active region is set most functions will operate in that regions only.

"* void SetCamera (coust ijt cam)

"* void DQS.SetCamera (coust int cam)

Select a camera for input. Cameras are numbered 0-5 where the camera
number corresponds to the composite connection to the DigiColor on the
signal cable box (VIDO-VID5). Limitations: Currently only camera 0 or
camera 1 may be requested and motion detection only is supported on
camera 0.

"* void SetColorMode (coast ColorMode _.cmColorMode)

"* void DQS.SetColorMode (coast ColorMode .cmColorMode)

Specify the current color mode. The color modes are cmGREY (greyscale),
and cmRGB. This will influence the type of frame grabbed from a camera
and how frames are displayed.

"* ColorMode cmGetColorMode ()

"* int DQSGetColorMode 0
Return the current color mode used for acquistion, and display. If an error
occurs or the color mode is illegal return cmError.

"* void SetNumLevels (coust int _NumLevels)

"* void DQS.SetNumLevels (coast int -NumLevels)

This specifies the number of levels in the multiresolution pyramid that are
computed. There can be at most 6 levels in the pyramid, ther must be
at least one level. If .NumLevels specified is more than 6 or less than 1
then this function returns false and the number of levels is not changed,
otherwise it returns true.

" int GetNumLevels 0

"* it DQSoGetNumLevels 0

Return the number of levels being created by the multiresolution pyramid.

"* void SetActiveRegion (const int level, conast int LowX, coust int LowY,
coust int HighX, coust int HighY)*

8

"* void DQS.SetActiveRegion (const int level, const int LowX,
const int LowY, const int HighX,
const int HighY)

Specify the active region of a level in the pyramid. Level reads and writes
occur only in the active region. Also color histograms are only computed
in the active region. When the multiresolution image is displayed only the
active regions appear on the screen. The active region is specified by the
upper left and lower right corners of a rectangle.

"* void GetActiveRegion (const int level, int& LowX, int& LowY,
int& HighX, int& HighY)

"• void DQSGetActiveRegion (const int level, int* LowX,
int* LowY, int* HighX,
int* HighY)

Return the active region of a level in the pyramid. Level reads and writes
occur only in the active region. Also color histograms are only computed
in the active region. When the multiresolution image is displayed only the
active regions appear on the screen. The structure DqRect contains 4
long fields, IXMin, IYMin, IXMax, and IYMax. These fields provide the
upper left and lower right corners of a rectangle.

"* void GrabHighResFrame ()

"* void DQSGrabHighResFrame 0
Read a frame from the camera. The color mode of the frame is determined
by SetColorMode.

"* void DisplayHighResFrame 0

"* void DQS.DisplayHighResFrame 0
Display the last frame grabbed in high resolution. The color mode of the
frame is determined by SetColorMode.

" int Readlmage (xv<unsigned char, 1>& xvclFrame)

" int DQS.Readlmagel (struct xvimage* pxvclFrame)

Read the last grey scale high resolution frame grabbed into an xv structure.
The current color mode should be cmGREY when this is called.

" int Readlmage (xv<unsigned char, 3>& xvc3Frame)

" int DQSReadlmage3 (struct xvimage* pxvc3Frame)

Read the last 3 band high resolution frame grabbed to an xv structure.
The current color mode should be cmRGB when this is used.

9m n m l u n nm o nmulnn n~umnmmn m nnllNnn nmm

" int Writelmage (const xv<unsigned char, I>& xvclFrame)

"* int DQS-Writelmagel (struct xvimage* pxvclFrame)

Write a one band xv image into frame acquisition memory. Use this com-
mand to simulate input from a grey scale camera.

"* int Writelmage (const xv<unsigned char, 3>& xvc3Frame)

"* int DQSWritelmage3 (struct xvimage* pxvc3Frame)

Write a three band xv image into frame acquisition memory. Use this
command to simulate input from a color camera.

"* int ReadLevel (xv<unsigned char, 1>& xvclFovea, const int level)

"* int ReadLevell (struct xvimage* pxvclFovea, const int level)

Read a one band image from the current frames ActiveRegion. The current
color mode should be cmGREY. If the color mode if not one band then
return false and the information written into xvclFrame in unspecified.
Note that this function does not necessarily return the whole frame, it
returns the active region.

"* int ReadLevel (xv<unsigned char, 3>& xvc3Fovea, const int level)

" int ReadLevel3 (struct xvimage* pxvc3Fovea, const int level)

Read a three band image from the current frame's ActiveRegion in the
specified levels acquisition memory. The color mode of the acquisition
memory should be cmRGB. If the current color mode is not three band
then return false and the information written into xvc3Frame in unspeci-
fied. Note that this function does not necessarily return the whole frame,
it returns the active region.

"* void CreateMultiRes 0

"* void DQSCreateMultiRes ()

Create a multiresolution pyramid from the current highres image. This is
usually called after GrabHighResFrame or Writelmage. The color mode
of the resulting multiresolution frame is determined by the current color
mode.

"* void GrabMultiReaFrame 0

"* void DQSGrabMultiResFrame (
Grab a highresolution frame and create a multiresolution frame This is
equivalent to calling GrablighResFrame followed by a call to CreateMul-
tiRes.

10

"• void GrabMultiResframeAndDisplay (

. void DQS_.GrabMultiResFrameAndDisplay 0
Grab a multiresolution frame and project it onto a foveated display, this
is equivalent to calling GrabMultiResFrame followed by a call to Project-
MultiRes.

• void ProjectMultiRes 0

* void DQSProjectMultiRes ()
Project the multiresolution image into display memory by successively
expanding and copying each levels active region to display memory starting
with the lowest level of resolution and ending at the high-tes level, level
0. This results in a foveated image in the display memory. The projection
is displayed until StopDisplay is called.

• void Foveate (const hat x, const hat y)

* void DQS_.Foveate (const int x, const hat y)

Set the active regions of each level to form a foveated system around the
coordinate (x, y). The number of levels in the pyramid is determined
by the SetNumLevels command. Each levels active region is a rectangle
where level I has a width of 1/2' that of the entire screen and a height of
1/21 of the entire screen. Levels active region is truncated at the edge of
the screen. For example:

Color histogram commands

The standard procedure for using color histogram backprojection is: 1) Choose a
model, histogram it and pass the histogram to the server with WriteModelHist.
2) Use GrabMultiResFrameAndDisplay to grab and display a multi-resolution
frame. 3) Call MakeOneBandlmage to convert the 24 bit color image into an
8 bit histogrammable image. 4) Call HistogramLevel to histogram any levels
whose backprojection will be used. 5) Use BackProject to backproject the model
onto the multires image. 6) Use BlurBackProject to smooth the backprojection.
7) Use ReadBiurredBackProjectLevel to read the blurred backprojection and
find peaks in this image.

* void WriteModelHist (const xvHist& xvhModel)

* void DQS_.WriteModelHist (int aModel)

Write a color histogram to the DataCube to be used as a model in his-
togram backprojection. Each level of resolution is scaled so that its points
are histogrammed appropriately for the area they cover. Therefore this
histogram should be of an image in the same scale as the highest level of

11

Level 0 Level 1

Level 2 Level 3

Figure 1.1: Foveated pyramid with 4 levels of resolution. The black regions
show the areas covered by a higher level of resolution.

resolution no matter what level of resolution is being used for backprojec-
tion.

"* iut HistogramLevel (3cvHist& xvh, const int level)

"* it DQS..GetHistogramnLevel (int ah, const int level)
A single band image must be created before this is called by making a
call to MakeOneBandlmage. Create a histogram of the active region in a
given level of resolution and return the histogram.

"* int HistogramLevel (coust bit level)

"* jut DQS..HistogramLevel (coust int level)
A single band image must be created before this is called by making a
call to MakeOneeandlmage. Create a histogram of the active region in a
given level of resolution. No histogram is returned.

"* void MakeOneBandlmage (const xvliist& xvh)

"* void MakeOneBandImage (Color2Grey 020)

"* void MakeOneBandImage ()

"* void DQS..MakeOneBandlmageAndSetConversion (Color2Grey 020)

12

"* void DQS.MakeOneBandlmage 0
Create a single band image from a color image. Only the 5 high order
bits are used in the conversion from each band, the 3 low order bits in
each band are masked to zero. If an xvHist is passed then the xvHist's
conversion function is used to convert pixels. If a Color2Grey is passes
then it is used to convert pixels. If no argument is passed then the last
function given is used to convert pixels. The function used to histogram
should be constructed to histogram UNSIGNED images, i.e. 8 bit, not 7.

"* void BackProject ()

"* void DQSBackProjectAll ()
Backproject the current model onto each levels active region, before this
can be called a histogram of all the needed levels must be made and their
one band images must be made. Note if a levels backprojection will not
be used then the level does not need to be histogrammed. Any points
outside the active region in a levels backprojection will be undefined.

"* void BackProject (coast int Level)

"* void DQSBackProjectLevel (const int Level)

Backproject the current model onto the levels active region, before this
can be called a histogram of all the needed levels must be made and their
one band images must be made. Note if a levels backprojection will not
be used then the level does not need to be histograrnmed. Any points
outside the active region in a levels backprojection will be undefined.

"* void BackProject (coast xvHist& xvhRatioHist, conast int Level)

"* void DQSBackProjectHist (kit* int aRatioHist, const kit Level)

Backproject the given ratio histogram on to the given level. Any points
outside the active region in a levels backprojection will be undefined.

"* void DisplayBackProj (coust int level)

"* void DQS.DisplayBackProj (coast int level)
Display a levels active region of the backprojection. If the backprojection
has been blurred then its blurred version is displayed. This active region
is copied on top of any other image being displayed.

"* void BlurBackProject ()

"* void DQSBlurBackProject 0

Blur each levels backprojection with an 8 x 8 fiat kernel. BackProject
should be called prior to making this call.

13

"* double Intersect (coast xvHist& xvhModel, coast xvHist& xvhlmage)

"* double DQS-intersect (int* aModel, int* almage)

Compute the color histogram intersection between two histograms.

"* jut ReadOneBand Level (xv<unsigned char, 1>& xvclLevel,
coast jut level)

"* it DQS..Read~neBandLevel (struct xvizaage* xvclLevel,
coast hit level)

Read the one band image of a given levels active region. MakeOneBan-
dLevel should be called before making this call.

"* jut ReadBackProjectLevel (xv<unsigned char, 1>& xvclBP,
coas~t hit level)

"* it DQS.R~eadBackProjectLevel (struct xvimage* xvclBP,
coast int level)

Read the unblurred backprojection of a given levels active region. Back-
Project should be called before making this call.

"* jut ReadBlurredBackProjectLevel (xv<unsigned char, I>& xvclCBP,
coast int level)

"* jut DQS..ReadBlurredBackProjectLevel (struct xvimage* xvclCBP,
coast int level)

Read the blurred backprojection of a giSetven levels active region. Blur-

BackProject should be called before making this call.

Motion detection from a moving platform

Motion can be detected by a call to DetectMotion. This will returns the centroid
of motion. DisplayMotion will display all the moved pixels. If the individual
moved pixels are needed ReadDivisionThreshold can be called. The algorithm
can be tweaked with a call to SetThresholds.

"* void SetThresholds (coast int ..grad..threshold,
coast Bloat ..motion..treshold)

"* void DQS.SetThresholds (coast jut -grad..threshold,
coast float -.notion..treshold)

This function allows the user to specify how sensitive the algorithm is to
intensity variations with ..grad..threshold (default 12), and how much ego
motion is expected with -mxotion-thresbold (default 2.0).

"* it DetectMotion (hit& pixCount, hit& CenterX, hit& CenterY)

14

" int DQS.DetectMotion (int&*pixCount, int* CenterX, int* CenterY)

Motion detection from a moving platform. The number of moving pixels
and the centroid of motion is passed back. Both the number of moving
pixels and the centroid are computed over the entire image, not the active
region for level 1. This call automatically sets the color mode to cmGREY

"* void DisplayMotion 0

"* void DQSDisplayMotion ()
Run a pipe that displays the frame that motion detection was run on with
all moving pixels marked in white.

"* int ReadIntensityDifferential (xv<unsigned char, I>& xvclIAt)

" int DQSJReadIntensityDifferential (struct xvimage* xvcll.t)

Pass back the derivative of intensity with respect to time of the frame
used for motion detection. This function should always return true. The
active region of level 1 is returned.

" int ReadGradient (struct xvimage* xvclGrad)

Pass back the Gradient of the frame used for motion detection. This
function should always return true. The active region of level 1 is returned.

" int ReadDivisionThreshold (struct xvimage* xvclDivision)

Pass back the thresholded division image used for motion detection. This
function should always return true. The thresholded division image has
all pixel values between 0 except the ones that moved which have a value
of 254. The active region of level 1 is returned.

Stereo

When two cameras are connected to the DigiColor through vidO and vid 1 stereo
frames can be grabbed. The frames are not grabbed at precisely the same
time. The two frames are incorporated into the gaussian pyramid structure.
The cameras are distinguished by the enumerated type camera which has the
enumerations Left (vidO) and Right (vid1). Below are the functions provided:

"* void GrabStereoPair 0

Read a stereo pair with the left camera connected to vidO and the right
camera connected to vidi.

"* void CreateStereoMultiRes 0

Create a Gaussian pyamid from the stereo pair.

15

* void ReadStereoLevel (xv<unsigned char, 1>& xvcl,
const Jut level, const camera C);

Read a level's active region of a stereo image.

Convolution

Convolutions can be computed over any level of the grey-scale pyramid, any
level of color histogram backprojection, the motion image, or a user specified
image. The kernel has byte coefficients and can be any rectangle with area at
most 64 bytes. Convolution produces a 40 bit result, but only 8 bits of this
result can be stored. After the convolution the 40 bit result can be shifted by
any value from -38 to +10 where negative values are right shifts and positive
ones shift left. After the shift the rightmost 8 bits are saved.

To support separable filters single pass and double pass convolutions are
possible. Two convolution filters may be specified, one for pass one and one for
pass two. Specifying both kernels and requesting a double pas& convolution is
similar to calling two consecutive single pass convolutions with the appropriate
kernel for each pass and with the same shift amount on each pass.

To Specify the surface for convolution the following enumerated type is pro-
vided. Custom specifies that a custom image is to be provided with the Write-
Convolution command. Grey specifies that a level of the greyscale Gaussian
pyramid is to be used. BackProjection specifies that a level of the histogram
backprojection pyramid is to be used. Motion specifies that the thresholded
division surface from motion detection is to be used.

enum DQlmage I
Custom,
Grey,
BackProjection,
Motion}

Note: Convolutions destroy the original surface.

"* void ReadConvolution (const ConvSurf co,
xv<unsigned char, 1>& xvcl)

"* void DQSReadConvolution (const ConvSurfco,
struct xvimage* xvcl)

Read a convolution from the server to the client. This is only for surface
that do not require a level of resolution to be specified and do not
require an image number to be specified. Currently this only includes
the Motion surface.

16

"* void ReadConvolution (const ConvSurf co, const imt Specifier,
xv<unsigned char, l>& xvcl)

"• void DQSJReadConvolutionWithLevel(const ConvSurf co,
const int Specifier,
struct xvimage* xvcl)

Read a convolutions from the server to the client. This is for surfaces
that require a level of resolution or an image number to be specified. For
Grey and BackProjection images Specifier should signify the level of
resolution to be read. For Custom images it should specify the custom
surface number. There may be up to NumCustomSurfs custom surfaces.

"* void WriteConvolution (const int Specifier,
const const xv<unsigned char, 1>& xvcl)

" void DQSWriteConvolution (const int Specifier,
const struct xvimage* pxvi)

Write a custom surface to the server. Specifier gives the custom surface
number. There may be up to NumCustomSurfs custom surfaces.

"* void SpecSingleKernel (const int pass,
const xv<unsigned char, 1>& xvclKernel)

" void DQS.SpecSingleKernel (const int pass,

struct xvimage* xvclKernel)

Specify a kernel to be used in convolutions. In support of double pass
convolutions which pass this kernel is to be used for should be specified.
Pass numbers are zero based, thus legal values are 0 and 1. The kernel
can be any rectangle with dimensions smaller that 8 x 8 or it can be a
horizontal 1-D kernel of size up to 1 x 64.

"* void SpecSingleShift (const int shift)

"* void DQS.SpecSingleShift (const int shift)

Specify the number of bits to be shifted after convolution. The 8 least
significant bits of the shifted result will be stored. Legal shift values
range from -38 to +10.

"* void ConvolveSingleKernel (const int NumTimes, const ConvSurf co)

"* void DQSConvolveSingleKernell (const int NumTimes,
conet ConvSurf co)

Perform the convolution. NumTimes specifies the number of
convolutions to do, legal values are 1 and 2. If NumTimes is 1 then the
kernel written an pass 0 with SpecSingleKernel is used. If NumTimes is 2

17

then first the kernel written as pass 0 with SpecSingleKernel is used,
then the kernel for pass 1 is used. The surface to convolve is specified in
co. This is only for surface that do not require a level of resolution to be
specified and do not require an image number to be specified. Currently
this only includes the Motion surface.

* void ConvolveSingleKernel (const int NumTimes, const ConvSurf co,
const int Level)

* void DQSConvolveSingleKernel2 (const int NumTimes,
const ConvSurfco, const int

Level)

Perform the convolution. NumTimes specifies the number of
convolutions to do, legal values are I and 2. If NumTimes is 1 then the
kernel written as pass 0 with SpecSingleKernel is used. If NumTimes is 2
then first the kernel written as pass 0 with SpecSingleKernel is used,
then the kernel for pass 1 is used. The surface to convolve is specified in
co. This is only for surface that require a level of resolution to be
specified or require an image number to be specified. Currently this only
includes the Motion surface.

* void Sobel (const ConvSurf co)

Preform a sobel operation on a surface. The surface to convolve is
specified in co. This is only for surface that do not require a level of
resolution to be specified and do not require an image number to be
specified. Currently this only includes the Motion surface.

* void Sobel (const ConvSurf co,const int Level)

Preform a sobel operation on a surface. The surface to convolve is
specified in co. This is only for surface that require a level of resolution
to be specified or require an image number to be specified. Currently
this only includes the Motion surface.

DAP commands

The following commands can be used to transfer images from the DataCube
to the DAP. Images are specified as they are in convolution with the DQImage
enumeration and a level. The enumerations are: Custom, Grey, BackProjec-
tion, and Motion. There are up to 4 levels of Custom images and the number of
levels of Grey and Backprojection images is controlled with the SetNumLevels
command. No levels are specified with the Motion image. Inorder for them to
work correctly the cable between the DataCube and the DAP should be discon-
nected when the DataCube is powered up. After the DataCube host is finished
booting the cable should be attached. A single image can be transfered to the

18

Image Levels Memory
Grey even 3
Grey odd 0
BackProjection even 3
BackProjection odd 0
Custom 0 4
Custom 1 2
Custom 2 1
Custom 3 0
Motion - 1

DAP or two can be transfered simultaneously. Not all images can be transfered
together. In particular, two images cannot be transfered simultaneously if they
reside in the same memories. The following shows which memories each surface
is stored in.

"* void SpecDAPOutputl (const DQLmage c)

"* void DQSSpecDAPOutputla (conast DQlmage c)

Transmit an image to the DAP that requires no second parameter for
specification, currently this includes only the motion image. If the image
is transmitted into the upper left corned of a 512 x 484 rectangle. If the
image is smaller than 512 x 484 then the region to the right and below of
the image in the 512 x 484 rectangle is undefined. If the image is larger
than 512 x 484 then only the upper left corner of it is transmitted. The
image is received by the dap as the first image in the transmitted array,
the second image in this array is undefined.

"* void SpecDAPOutputl (const DQlmage c, coast int Level)

"* void DQS.SpecDAPOutputlb (const DQLmage c, coast int Level)

Transmit an image to the DAP that requires a second parameter for
specification, currently this includes the custom, greyscale, and
backprojection images. If the image is transmitted into the upper left
corned of a 512 x 484 rectangle. If the image is smaller than 512 x 484
then the region to the right and below of the image in the 512 x 484
rectangle is undefined. If the image is larger than 512 x 484 then only
the upper left corner of it is transmitted. The image is received by the
dap as the first image in the transmitted array, the second image in this
array is undefined.

" int SpecDAPOutput2 (coast DQlmage cl, const int Levell,
coust DQlmage c2)

19

int DQSSpecDAPOutput2a (const DQlmage cl, coust int Levell,

const DQlmage c2)

Transmit two images to the DAP where the first requires a second
parameter and the second does not. The first image can be the custom,
greyscale, and backprojection images. The second image should be the
motion image. If the image is transmitted into the upper left corned of a
512 x 484 rectangle. If the image is smaller than 512 x 484 then the
region to the right and below of the image in the 512 x 484 rectangle is
undefined. If the image is larger than 512 x 484 then only the upper left
corner of it is transmitted. The first image is received by the dap as the
first image in the transmitted array, the second image iis the second
image in that array. True is returned if the transfer is successful, false if
returned if the transfer fails because the images are incompatible for
dual transfer.

int SpecDAPOutput2 (coust DQlmage cl,
const DQImage c2, const int Level2)

int DQS.SpecDAPOutput2b (const DQImage cl,
const DQlmnage c2, const int Level2)

Transmit two images to the DAP where the first requires a second
parameter and the second does not. The first image should be the
motion image. The second image can be the custom, greyscale, and
backprojection images. If the image is transmitted into the upper left
corned of a 512 x 484 rectangle. If the image is smaller than 512 x 484
then the region to the right and below of the image in the 512 x 484
rectangle is undefined. If the image is larger than 512 x 484 then only
the upper left corner of it is transmitted. The first image is received by
the dap as the first image in the transmitted array, the second image iis
the second image in that array. True is returned if the transfer is
successful, false if returned if the transfer fails because the iniages are
incompatible for dual transfer.

Sint SpecDAPOutput2 (coust DQmnage cl, const int Levell,
coust DQIJmage c2, coust int Level2)

* int DQSSpecDAPOutput2c (const DQLmage cl, const int Levell,
const DQImage c2, const int Level2)

Transmit two images to the DAP where both images require a second
parameter. These can be the custom, greyscale, and backprojection
images. If the image is transmitted into the upper left corned of a
512 x 484 rectangle. If the image is smaller than 512 x 484 then the
region to the right and below of the image in the 512 x 484 rectangle is
undefined. If the image is larger than 512 x 484 then only the upper left

20

corner of it is transmitted. The first image is received by the dap as the
first image in the transmitted array, the second image iis the second
image in that array. True is returned if the transfer is successful, false if
returned if the transfer fails because the images are incompatible for
dual transfer.

0 void CompleteDAPTransfer 0
Halt the transfer of an image to the DAP. After this function is called all
data received by the DAP is undefined.

Imageflow gs commands
The following set of functions allow you to draw on the display overlay. They
consist of all the Imageflow graphics commands plus two commands for drawing
sets of data.

All C versions of these routines have the DQS_ prefix and take the same
arguments.

The following Imageflow gs function provide graphics on the overlay to the
display. For information on these functions see the Imageflow Reference Manual.
Note that only the gslnq and gsAsk functions return information, all other
functions return data is lost. It should be assumed that DQ.OK would be
returned for all non-Askinq funtions.

"* void gsSaveAttr (GsAttr *ptGsAttr)

"* void gsRestoreAttr (GsAttr *ptGsAttr)

"* void gsSpecRasterOp (DqEnum eVisibility, DqEnum eSrcType,
DqEnum eDstType, DqEnum eDrawOp)

"* it gsAskRasterOp (DqEnum *peVisibility,
DqEnum *peSrcType, DqEnum *peDstType,
DqEnum *peDrawOp)

"* void gsSetDrawingOp (DqEnum eDrawOp)

"* DqEnum gslnqDrawingOp 0

"* void gsSetLinePattern (int iPattern)

"* it gslnqLinePattern 0

"* void gsSetLineColor (DqQByte qColor)

"* DqQByte gslnqLineColor 0

"* void gsSetMarkerType (DqEnum eMarkType)

21

*DqEnum gslnqMarkerType (
Ob void gsSpecMarkerSize (imt iXRad, int iYRad)

"* it gsAskMarkerSize (hit *piXRad, int *piYRad)

"* void gsSetMarkerColor (DqQByte qColor)

"* int gsinqMarkerColor ()

"* void gsSetPerimVis (DqQByte qPerimVis)

"* DqBool gslnqPerim Via ()

"* void gsSetfiliStyle (DqEnum eFiliStyle)

"* DqEnum gslnqFillStyle 0)
"* void gsSetFiliColor (DqQByte qColor)

"* DqQByte gslnqFillColor ()

"* void gsSetPerimColor (DqQByte qColor)

"* it gslnqPerimColor 0)
"* void goSetFontlndex (int jindex)

"* hit gsinqFontlndex ()

"* void gsSetTextStep (hit iTextStep)

"* it gslnqTextStep 0)
"* void gs&etTextColor (DqQByte qColor)

"* DqQByte gslnqTextColor 0)
"* void gsSetChar~rientation (mnt iOrientation)

"* int gslnqChaz~rientation 0)
"* void geSpecTextAlign (DqEnum eXAlign, DqEnurn eYAlign)

"* hit gsAskTextAlign (DqEnum *peXAfign, DqE-um *peYAlign)

"* void gaPoint (long IX, long IY)

"* void gaDot (long IX, long IY)

"* void gaLine (long IX I, long M~, long IX2, long 1Y2)

"* void gaPqolyLine (hit iNumPointa, long *plPointList)

22

"* void gsDisjointPoly Line (iut iNumPoints, long *plPointList)

"* void gsftectangle (long IX I, long IYlI, long 1X2, long 1Y2)

"* void gaCircie (long IX, long IY,

"* iut iRad)

"* void gsEllipse (long IX, long IY, int iXRad, int iYRad)

"* void pslarker (long IX, long IY)

"* void gsSpecViewport (long IXMin, long lYMin,
long IXMax, long IYMax)

"* mt gsAskViewport (long *pIXMin, long *pIYMin,
long *pIXM&X, long *PlYM&X)

"* void gsSpecClipRect (long IXMin, long IYMin,
long IXMax, long IYMax)

"* jut gsAskClipRect (long *pIXMin, long *pIYMin,
long *plXMax, long *pIYMax)

"* void gsSetClipSrc (int eClipSrc)

"* DqEnum gslnqClipSrc0

"* void gsReeetToDefaults

"* void gsHardReset ()

"* void gsSetBackgroundColor (DqQByte qCoior)

"* DqQByte gslnqBackgroundColor 0)
"* void gaClearView (DqQByte qColor)

"* void gsV&lidFont (int iladex)

"* void gaText (long IX, long IY, char *pcText)

"* void geFontDir (char *pcDir)

"* void gs~penFont (char *pcFile)

"* void gsCloseFont (int ilndex)

"* void gaChar (long IX, long IY, int iChar)

"* void gsGetCharExtent (iat iChar, long IX, long IY,

GsExtent *ptGeExtent)

23

0 void gsGetTextExtent (char *pcText, long IX, long IY,
GsExtent *ptGsExtent)

In addition to the gs functions there are two functions provided for quickly
displaying large sets of points. These are DrawPointSet and DrawDotSet.

"* void DrawPointSet (const int NumPoints, int* Points)

Given an array of x, y coordinates draw a point at each coordinate. The
nth coordinate occupies the elements 2n and 2n + 1.

"* void DrawDotSet (const int NumDots, int* Dots)

Given an array of x, y coordinates draw a dot at each coordinate. Tht
"nth coordinate occupies the elements 2n and 2n + 1.

Directed perception pan-tilt unit

These functions directly call their counterparts on the Directed Perception pan-
tilt head. In addition to the standard Directed Perception commands, pan and
tilt positions can be specified in degrees, radians, grads, pixels, as well as the
default pan-tilt-ticks. The width and height of the camera in pixels can be
specified for calibration with the other angular measures. BUGS: if the pan-tilt
head is not connected the server will hang waiting for a reply from the head.

No C support is provided for these functions.

Resolution settings

Set the constants used to compute angular distance in terms of pixels.

" double PanRes (double d)

Specify the expected pan resolution in seconds/arc. This should always
be equal to the return value from the pan.res function.

" double TiltRes (double d)

Specify the expected Tilt resolution in seconds/arc. This should always
be equal to the return value from the tilt.res function.

"* double CameraWidth (double d)

Specify the expected camera width in pizels/degree. Actual pan
movements in terms of pixels are computed from this and the PanRes.

"* double CameraHeight (double d)

Specify the expected camera height in pizels/degree. Actual tilt
movements in terms of pixels are computed from this and the TiltRes.

24

* double PanRes (
Query expected pan resolution in seconds/arc. This should be the same
as the return value from the pan..res function.

* double TiltRes 0)
Query expected tilt resolution in 8econds/arc. This should be the same
as the return value from the tilt..res functio'.--

* double CameraWidth ()

Query expected camera width in pizelaf degree.

* double Cameralleight 0)
Query expected camera width in pizels/degree.

Positioning

These functions make position queries and requests as described in sections 4.2.1
and 4.2.2 of the pan-tilt head manual. Legal MovementType's are:

* pan..ilt::Relative

* pantilt :Abeolute

Legal AngleTypes are:

"* pantilt: :pan..tilt..icks

"* pan...ilt::egrees

"* pan...ilt -radians

"* pan .ilt::grads

"* pan...ilt::pixels

"* double pan (pan...ilt::AngleType at =pan...ilt::panlilt..icks)

"* double tilt (pan...ilt::AngleType at =pan...ilt::pan-tilt..icks)

"* void pan (double ppos,
pan..ilt::MovemnentType mt = pan..ilt: :Relative,
pantilt ::AngleType at = pan..ilt: :pan..tilt..icks)

"* void tilt (double tpos,
pan~ilt::MovementType mt = pan...ilt::Relatii..,
pantilt::AngleType at = pan~ilt: :pan..tilt..icks)

"* void pan..and..ilt (double ppos, double tpos,
pan..ilt:: MovementType mt = pan .. ilt: :Relative,
pan...ilt::AngleType at = pantilt ::pan-tilt..icks)

25

pan/tilt resolution

As described in section 4.2.3 or the pan-tilt manual these commands query the
pan/tilt resolution in seconds/arc.

"* double pantes 0

"* double tilt.res 0

position limits

Query the pan/tilt limits as described in section 4.2.4 of the pan-tilt manual.

"* double panamin (pan-tilt::AngleType at = pan-tilt::pan-tilt-ticks)

"* double pan.max (pan-tilt::AngleType at = pan.tilt::pantilt.ticks)

"* double tilt.-min (panotilt::AngleType at = pan.tilt::pantilt.ticks)

"* double tilt.max (pan.tilt::AngleType at = pan-tilt::pan.tilt.ticks)

Position limits enforcement

Query and specify whether position limits are enforced or not as described in
4.2.5 of the pan-tilt manual. PositionLimits may be set to pan.tilt::Disable,
and pan.tilt::Enable.

" int pos-limits.enforced 0

" int plimits (pan.tUt::PositionLimits p)

Imnmediate/slave position execution mode

Specify execution mode as slave or immediate and execute slaves as described
in 4.2.6, and 4.2.7 of the pan-tilt manual. ExecutionMode may be set to
pan-tilt:Immediate, or pan-tilt::Slave.

& int exec.mode (pan.tilt::ExecutionMode em)

* int execute-slaves 0

Await position command completion

Pause until a positioning command is completed as described in section 4.2.8 of
the pan-tilt head manual.

* int wait.pan-tilt-command 0

26

Speed

Query and specify pan/tilt speed as described in section 4.3.2 of the pan-tilt
manual.

" int pan-speed 0

" int tilt.speed 0

"* int pan-speed (int pspeed)

" int tilt.speed (int tspeed)

Acceleration

Query and specify pan/tilt acceleration as described in section 4.3.3 of the pan-
tilt manual.

* int pan.accel 0

* int tilt.accel 0

* int pan-accel (int paccel)

* int tilt-accel (int taccel)

Base startup speed

Query and specify pan/tilt base speed as described in section 4.3.4 of the pan-tilt
manual.

"* int pan.base-speed 0

"• int tilt.base-speed 0

"* int pan-base-speed (int pbspeed)

"* int tilt-base.speed (int tbspeed)

Speed bounds

Query and specify pan/tilt base speed limits as described in section 4.3.5 of the
pan-tilt manual.

"* int pan-low-speed 0

"• int pan-high.speed 0

"* int tilt-low.speed 0

27

"* int tilt.high.speed 0

"* int pan-low-speed (int pispeed)

"• int pan-high.speed (int phspeed)

"* int tilt-low-speed (int tlspeed)

"* int tilt-high-speed (int thspeed)

Unit commands

Pan-tilt unit state commands as described in sections 4.4.1, 4.4.2, and 4.4.3 of
the pan-tilt head manual.

" int reset 0

" int save 0

" int restore 0

"* int restore-default 0

" int version 0

Power consumption

Query/specify power consumption as described in sections 4.5.1, and 4.5.2 of the
pan-tilt head manual. The PowerMode enumerated type has the enumerations
Hi, Regular, Low, and Off.

"* Jnt pan-hold.power.mode 0

"* int pan-hold-poweramode (pan.tilt::PowerMode pm)

"* int tilt.hold-power.mode 0

"* int tilt.hold-power.mode (pan.tilt::PowerMode pm)

" int pan.move.power-mode 0

"* int pan.move.power-mode (panAtilt::PowerMode pm)

" int tiltmove-power.mode 0

"• int tilt-move.power.rmode (pan.tilt::PowerMode pm)

Scheduling commands

These commands provide the ability to insure that certain commands are ex-
ecuted in series without another clients commands being interleaved between
them.

28

Sequences

Sequences are collections of commands that are treated as a single atomic re-
quest by the server. By treating the sequence as an atomic request no other
clients commands can interrupt the order of execution in the sequence. Se-
quences are initiated with a call to BeginSequence. After BeginSequence is
called all server requests are cached on the client until EndSequence is called.
When EndSequence is called all cached commands are transmitted to the server
in a single package. Since the cached commands are transmitted all at once the
amount of network overhead in transmitting the commands is reduced. After
the server receives the commands in the sequence it schedules them as an atom.
While they are executed their results may be sent back to the client or discarded
depending on which version of EndSequence is called.

"* void BeginSequence 0

"* voidDQS_ BeginSequence 0
Begin a sequence. No commands will be sent to the server until the se-
quence is finished with a call to EndSequence.

"• void EndSequence 0

"• void DQSEndSequence 0
End a sequence. Information from all deferred commands is discarded by
the server.

"* void EndSequence (ExecutionCode& ec)

"* void DQS.EndSequence (ExecutionCode& ec)

End a sequence. The ExecutionCode returned is made by or'ing each
command in the sequence's execution code together and or'ing Success-
NoReturnData with this sum.

"* void EndSequence (DataPackage,& pdp,

ExecutionCode,& aec,

int& Size)

"• void DQSEndSequence (DataPackage,& pdp,
ExecutionCode*& aec,
int& Size)

End a sequence. Information from all deferred commands is read from the
socket into the DataPackage and ExecutionCode arrays, these array are
returned in adp and aec and their size is returned in NumOfpdp. Use of
this command requires knowledge of the command packaging schema and
is discouraged until a less primitive interface is developed.

29

Mutual Exclusion

A second method for insuring that series of commands are not interrupted
by other clients is to use mutual exclusion. A client may enter mutual
exclusion with a call to BeginMutex. Only one client can be in mutual
exclusion at a time and if a client is in mutual exclusion only its requests
are scheduled by the server. A client exits mutual exclusion by calling
EndMutEx or losing its connection.

Mutual exclusion differs from sequences in that DataCube server in that
requests are not deferred until EndMutEx is called. Instead they are
executed and return responses in the same way that they do when a client
is not in mutual exclusion.

It should be noted that if client A is in mutual exclusion mode all com-
mands sent to the server by client B will be executed, but not until client
A leaves mutual exclusion. If client B executes a command that returns a
result from the server when client A is in mutual exclusion then client B
will block until that result can be returned (i.e. it will block until client
A leaves mutual exclusion). If client B executes a command that does not
return a result from the server it will not block, but the command will not
have been executed. Thus, client B could accumulate many commands on
the server if none of them returned a response.

* int BeginMutEx 0

* int DQS.BeginMutEx 0
Begin mutual exclusion. This command stops all other users commands
from being scheduled if it succeeds. This command returns true if your
are able to enter mutual exclusion mode, it returns false if you are not
able (i.e. another client is in mutual exclusion).

* int EndMutEx 0

* int DQSEndMutEx 0
End mutual exclusion. This command ends a mutual exclusion session,
allowing other clients commands to be executed. This command returns
true on success and false on error (i.e. if you were not in mutex when it
was called).

Server administrative commands
The functions in this class provide administrative capabilities such as killing
users, clearing the log file, and listing the connected clients. These functions
are primarily for debugging purposes. In order to execute any command in the
administration class except for AdminMode the user must be in administration
mode. To enter administration mode call AdminMode.

30

"* int AdminMode 0

"* it DQS.AdminMode 0
Enter administration mode to provide client with the privilage to execute
other administrative functions.

"* it ClientMode 0

"* hit DQSClientMode 0
To exit administration mode execute this command.

"* it KillClient (const hit client)

"* it DQSKillClient (const iat client)

This command will close the socket connection to a given client. The
client number must be known, see ListClients. This command returns
true if client is a legal client number, otherwise it returns false.

"* iat ClearLog 0

"* it DQS.ClearLog 0
Delete all the data in the log file and reinitialize its header. This command
should always return true.

"* int Log (const hit fLog)

"* iut DQS.Log (const int fLog)
If fLog is true then turn command logging on, otherwise disable command
logging. This command should always return true. The default is not to
log commands.

* jut SetInitPort (const iut port)

"* it DQS.SetlnitPort (const int port)

Change the initialization port. This will NOT disconnect any existing
clients, but future clients will have to connect to the new port number.
This command should always return true.

"• jut ListClients (int*& aClientList)

"* it DQS.ListClients (int,& aClientList)
List the currently connected clients.

"* iut NumClients 0

"* int DQSNumClients 0
Return the number of clients connected.

31

" int MaxNumClients 0

" int DQSMaxNumClients 0
Return the maximum number of clients that can be connected at any time.

"* void ShutDown ()

"* void DQS.ShutDown 0

Shutdown the server, closes all socket connections and disconnects the
DataCube.

Networking commands

This clau provides the ability to connect and disconnect to any server. It is
used primarily in the constructor and destructor of the client class and to initiate
DataCube sessions.

"* void WaitForConnection (count char * counst shoet, coust int port);

"* void DQSWaitForConnection (const char * const shost,
const int port);

Try to create a socket connection with a DataCube server running on the
machine shoot at the specified port. If the connection is unsuccessful ask
the user if another attempt should be made.

"* int Connect (counst char * const shost, counst int port)

"* int DQS.Connect (counst char * const shost, count int port)

Try to create a socket connection with a DataCube server running on the
machine shost at the specified port. If the connection is successful return
true, otherwise return false.

"* int Disconnect 0

"* int DQSiDisconnect 0
Close a connection with the server. If there was no connection to close in
the first place return false otherwise return true.

"* int SetRecvBuf (counst int Size)

" int DQSSetRecvBuf (count int Size)
Specify the number of bytes in the servers receive buffer for the clients
socket connection. If images are being transferred this should be large, if
only integers are being transferred then this should be small.

"* int ID 0

32

" int DQS.JD 0
Ask the server for your ID and return it. On an error return -1.

"* void Wait 0

"* void DQSWait 0
Block until all commands requested by the client have been executed.
Commands that return no result are scheduled and executed in the back-
ground. Also sequences that do not return results are executed in the
background. Wait blocks until these are completed. This is useful for
keeping in sync with other devices.

"• bf void SetID (const char* const s9D)

"* bf void DQS.SetID (const char* const sID)

Specify a string to be associated with the client. Other clients can look at
this string with GetID to determine who a client is.

"* bf int GetlD (const int Client, char sIDO)

"* bf int DQS.GetID (const int Client, char sIDD)

Ask for a clients ID string. The string sID should point to initialized
memory. The ID string written into sID will always be shorter than Dis-
tribute::ClientlDLength defined in Distribute.H. Currently this value is
256 and thus sID should be of length at least 256. Return true if Client
is a legal client number, else return false.

Programming client from C
To use the server from C you must link the libC.a library from C++ and the
libC.client.a library from the server. The libC.client.a library defines a C++
main function that is used to initialize all static members of the classes. This
main calls the function c.main which is defined to be extern "C". You should
supply the c.main function instead of main.

From C there is no way to access the DQclient class directly. Instead all its
member functions have C function counterparts with a "DQS2' prefix. Besides
for the "DQS&" prefix, a suffix is added for members with overloaded names.
The below list shows the correspondence:

Programming Tips

The clienttest Interpreter

There is an interpreter in SDQ-SERVER.HOME called dq.server/client. This
program allows users to type in any request to the server and the results of the

33

request are returned. This is a useful experimentation and debugging tool.

Trouble Shooting

" The Log file One particularity useful feature for detecting bugs is to en-
able command logging by the server with the Log command (note: this
command requires that a client enter administration mode with a call to
AdminMode). When this is enabled all commands transmitted to the
server are written to the log file. The log file can be inspected to deter-
mine where a program crashed or where it made the wrong sequence of
calls.

" Server wont start - Unable to Open Event Manager.

- A server or another DataCube program is currently running.

- You are not on the DataCube host.

"* Client cannot connect to server

- Server is being run at a different port than the client expects: tell
client to use correct port or run client interpreter, execute Admin-
Mode, and use SetlnitPort to change the servers port.

- Server is not running.

- Server has not finished initialization.

- Client is not on the network.

"* Server crashes

- If your program exits while it is waiting for information from the
server the server will crash because it is writing to a closed socket.
This may happen when the server is executing a long sequence that
returns data and the client is exited with control-C.

"* Server hangs

- The server will hang if a pan-tilt command is requested while the
pan-tilt head is not connected to the server.

"* Template symbols are undefined at link time

Some C++ linkers are not able to figure out which template functions
have been used in the libraries they are linking and thus do not know
which functions to instantiate and link. To resolve this problem one can
create an object file (not a library) that declares all templates used by
the libraries and link this object into the binary. Since the file containing
main is often linked as an object rather than a library the definitions may

34

be declared in its object. For clients the following function can be added
to mains object file:

void tmp 0 {
//Force template instantiation for the library routines.

xv<unsigned char, 1> xvcl;
xv<unsigned char, 3> xvc3;
xvHist xvh;

When writing servers declare this function:

void tmp 0 {
I/Force template instantiation for the library routines.

xvdq<unsigned char, 1> xvcl;
xvdq<unuigned char, 3> xvc3;
xvflist xvh;I

Upgrading

When a new version of the server is installed all clients much be recompiled.

35

Chapter 2

Extending the DataCube
Server

Introduction

This document describes the process of adding pipelined functions to the Dat-
aCube server. It involves writting imageflow code in C++ under the dq4gLobal
class. An understanding of C++ and imageflow is necessary. A document on
the dq-global class is provided as reference when writting code.

A quick overview

To add a set of routines to the DataCube server one must perform 4 steps. First
they need to design the DataCube routines. This is done by creating a clas for
the routines to live in and adding that class to the DataCube routine class hier-
archy. Second an entry in the dq.server.command enumerated type must be cre-
ated for each member of the class that is to be distributed by the server. Third
an exec class must be made to interpret the entries in the dq-erver-rommand
enumerated type and execute the appropriate command from the DataCube
class. The executor class must be made to inherit this exec class class. Fourth
a client base class must be made as an application programmatic interface to
client writers and inherited by the client class.

The DataCube routine class hierarchy

The first step is to write your imageflow routines within the servers clas hier-
archy. The DataCube routines are currently divided into 4 class structures: the
dq.global DataCube base clas, the multi-resolution classes, the color histogram

36

Figure 2.1: Initial claw hierarchy

Figure 2.2: Clam hierarchy after inheriting dq..lobal

class, and the motion class. The inheritance in this class hierarchy is shown in
figure 2.1.

Inheritance hierarchies

If you were to add the clams DQnew to this hierarchy there would be 5 ways to
connect it. At the very least DQnew ham to virtually inherit dq..global. Without
dq..global DQnew would not be able to acces any of the DataCube IP devices.
In addition, dq..global is needed to allocate memory properly and to inform other
classes when DQnew modifies ertain elements (see the section on dq..global).
This class hierarchy is shown in figure 2.2.

Often a clam will need a frame acquisition pipe and a display pipe. In
these cases you may want to virtually inherit the me clam as in figure 2.3.
By virtually inheriting this clam you have multi-resolution frame grabbing and
display, and pipes can be made to operate on active regions rather than whole

37

colorbist dqSobeamlo

Figure 2.3: Class hierarchy after inheriting mres

nires-crte m -dispiay mressrate, Mres..divay

bist motio I coarist}md

I

Figure 2.4: Class hierarchy after inheriting motion or colorhist

levels of a particular resolution. It is the highly recommended to operate on
active regions because if all classes do this then there will be a single mechanism
for restricting processing in all functions.

It m•,7 be the case that you are writting routines that will be built onto
an existing set of routine. You may use the results from a color histogram
backprojection and therefore will want to virtually inherit the colorhist class.
Alternately you may want to use the output of the motion detecting routine.
In these two cases you would result in one of the two hierarchies in figure 2.4.
It may even be the case that you need both the results of motion detection and
of color histograms, resulting in multiple virtual inheritance as in figure 2.5.

38

Ine

Figure 2.5: Class hierarchy after inheriting colorhist and motion

Resource management: the dq-global base class

Memory allocation

Inorder for many functions to independently use the DataCube, but to exist
in a single application, ther must be a mechanism for functions to allocate
memory and be sure that no other function will write to that memory. This
is accomplished in the dq.global base class through a function called allocate.
The function allocate returns rectangles of a requested size in a specified AM
memory. Once allocate returns a rectangle it will not allocate a rectangle that
intersects it to any other function. Thus, if all DataCube functions only use
processing rectangles returned from allocate then they will be guaranteed not
to have memory conflicts. See the section on the dq-global class for more infor-
mation.

IP element state monitoring

When integrating multiple pipelined applications it is often necessary that the
functions or PATs that setup and fire pipes be context independent (see the
DataCube Image Processing Manual for more on context independent PATs).
Since some elements can take a long time to set it is desirable that they only
get set when they absolutely have to. These elements include all LUT's, the
DigiColors DAC and ADC, and the NMAC. The dq-global class provides the
ability to keep track of which class last modified an element so that the element
can be reset only when it has been changed.

Each class can request an identification number though a call to the Get-
NewUserID member of dq.global. This is typically done in the classes construc-

39

tor and the returned ID is used throughout the life of the class. When an element
that is being monitored is modified the class should call the UseElem member
of dq.globals with the elements identification information and the classes ID.
If a pipe is later fired that requires that the elements state has not changed
GetElemUser or UnmodifiedElem can be called to see if the element has been
changed; if it has been changed it should be reset to its original state and a call
to UseElem should be made. It is important that UseElem be called whenever a
monitored element is modified; currently the following elements are monitored:
all LUT's, the DAC and ADC on the DigiColor, and the surfaces in all NMACS.
See the section on dq.global for identification conventions for these elements.

Compiling into the class hierarchy

Include tiles

Inorder for a class to inherit into this hierarchy it must include the appropriate
header files. Each class (dq.global, mres, colorhist, and motion) has an associted
header in SDQ.SERVER-HOME/include of the same name with a. H extension
(dq.global.H, mres.H, colorhist.H, motion.H). Each class that is inherited as a
base should have its header included. For example, if mres is the base then
mres.H should be included and if colorhist and motion are both inherited using
multiple inheritance then both colorhist.H and motion.H should be included (in
any order).

Libraries

The classes in the server are archived into a set of libraries. To make a new server
you must link with the following libraries from SDQ.SERVERLHOME/Iib:

"* libserver.a

"* libmotion.a

"* libcolorhist.a

"• libmres.a a

"* libdq.base.a a

"• libcomm.a a

"* libdlist.a a

"* libhead.a a

"* libxv.class.a

"* libmisc.a

40

From SKHOROSAHOME/lib you must link with:

"* libvipl.a

"* libvutils.a

"* libvmath.a

"• libvgparm.a

"• libverror.a

"* libUofCKhoros.a

And from SDQHOME/Iib you must link libdq.a. The order in which these
libraries are linked is important, if the are not linked in the order listed then
undefined symbol errors will occur at link time.

An example
Here is an example class definition that needs acquisition and display from the
mres class.

class DQnew : virtual public mres {
private:

DqSurf oSurf;
public:

DQnew 0 : mres () {oSurf = allocate (0, 0, 100, 100);}
void Funcl (int i);
int Func2 (const xvdq<unsigned char, I>& const xvcl, xvHist& xvh);

}

If the DQnew were compiled and archived into the library libDQnew.a the
followinglink command would be used to link the new server. Note that since
these routines use templates the include path is needed at link time. Also note
that libDQnew.a is linked after (listed before) the mres libraries since it will use
some of the mres functions. New DataCube libraries should always link before
(be listed after) libserver.a because libserver.a needs to reference their functions.

CC -o dq.server dq.server.o
-IS{KHOROS.HOME}/includeC++
-I${ DQHOME)/includeC++
-I${DQ.SERVERHOME}/include
-L${DQ.SERVERHOME}/lib -Iserver -IDQnew -Imotion -Icolorhist -Imres

-ldq.base -lcomm -Idlist -lhead -lxv..clas -Imisc
-LS{KHOROSHOME)/lib -Ivipl -Ivutils -Ivmath -Ivgparm -Iverror

-lUofC.Khoros
-L${DQHOME)/Iib -Idq

41

Debugging

Before linking with the server one may wish to simply link the datacube class
hierarchy together for debugging purposes. To do this libserver.a does not need
to be linked, but all the other libraries listed above are needed. Then you could
instantiate the DQnew class and call its member functions directly from a test
program.

The dq.server.command enumerated type

Once a class is added to the DataCube hierarchy it needs to be incorporated
into the server. The first step is to decide which functions of the class will
be distributed by the server across the network. A code will have to be as-
signed to each function inorder for the client to communicate to the server that
it needs that function executed. Assigning codes to functions is done in the
dq.server.command enumerated type that is defined in the files commands.H
and commands.C in SDQ.SERVER.HOME/lib/src. This enumeration contains
a code for every command that can be executed by the server.

Before the TOTALNUMBER-OF.COMMANDS enumeration at the end
of the dq.server-command declaration in commands.li, but after all the other
enumerations in the list, you should add an enumeration for each function to be
distributed plus a symbol to signify the beginning and end of your enumeration
list. It is suggested that the name of the code you use be the name of your class
with the name of the function appended to its end (append a number after the
function name if the function is overloaded), and the name of the enumeration
to signify the beginning and end of your list be the name of your class with
First and Last appended to them.

There is a string associated with each of the dq.server.command enumerated
type. These strings are defined in the asdq.server.command.names array in
commands.C. When logging is enabled each time a command is sent to the server
the string associated with the commands enumeration is written to the command
log. The next step is to write these strings into the asdq.server.command.names
array. It is suggested that the string associated with each enumeration simply
be the name of the enumeration it corresponds to.

Example

If you were adding the class DQnew with functions Funcl and Func2 to the
server the following changed would be made:

* Original Commands.H:

GRAPHGetTextExtent,

42

GRAPHBitBltView,
GRAPULast, //197
/* do not add new commands past this line *
TOTAL-NUMBER-OF-COMMANDS

*New Commands.H

GflAPHGetTextExtent,
GRAPHBitBltView,
GRAPHLast, //197
DQnewFirst,
DQnewFunc 1,
DQnewFunc2,
DQnewLast,
/* do not add new commands past this line/
TOTAL-NUMBER-OF-COMMANDS

* The file Commands.C would be similarily modified.

"* Original Commands.C:

"GRAPHGetTextExtent",
"GRLAPHBitBltView",
"GRAPHLast", //197

/* do not add new commands past this line ~
"'rOTAL-NUMBER-OF-COMMANDS"

"* New Commands.C:

"GRAPliGetTextExtent",
"GRAPHBitBltView",
"GRAPHLast", //197
"DQnewFirst",
"DQnewFuncl",
"DQnewFunc2",
"DQnewLast",
/* do not add new commands past this line ~
"TOTAL-NUMBER-OF..COMMANDS"

43

The executor

After the enumerations are made for your functions, a class is needed that will
parse commands sent by the client, execute the appropriate function, and return
the results of the function call to the client. The class is usually named exec
followed by the name of your class (execDQnew for the above class). This class
must inherit the new DataCube class (DQnew) and have the following member
functions:

Sint Scheduable (const dq.server.command command) const

This function returns true if the command can be scheduled and false
otherwise. Almost all commands can be scheduled; in all but very rare
circumstance this should return true. Disconnect is an example of a func-
tion that is not schedulable.

* int fDQnewCommand (const Schedltem& S) const

Note, the name of this function should be f<dq-class-name>Command
where class name is DQnew in this example. This function returns true if
the command field of S is one of the enumerated commands for this class in
the dq-server.command enumerated type. The standard implementation
of this function is to return:

((S.command > DQnewFirst) && (S.command < DQnewLast)).

* dqDataPackage& exec (const Schedltem& S, ExecutionCode& ec)

This function parses the message received from the client, executes the
appropriate command, and returns a response to the client. It is described
in detail below:

The exec function

This function parses the message received from the client, executes the appro-
priate command, and returns a response to the client. There are two classes
that are used by this function to receive and transmit data: dqDataPackage and
SchedItem.

dqDataPackage

The dqDataPackage is a container class for an array of integeres, an array of
xvdq<unsigned char, 3>'s, an array of xvdq<unsigned char, 3>'s, and an
array of xvHists. These are the only data types that can currently be trans-
mitted across the network. When the client sends a command it packages the
commands arguments into a dqDataPackage before transmitting them across
the network. The exec function must unpack each dqDataPackage inorder to
pass its contents as parameters to the appropriate DataCube function, and it

44

must pack the functions results into a dqDataPackage to return to the client. See
the section on DataPackages for specific information on the member functions
for the dqDataPackage class.

Schedltem

Schedltem is a class containing two data fields; a dq.server.commands called
command, and a pointer to a dqDataPackage called pdp. The command field
contains the command to be executed and pdp contains the arguements to the
commands function call. The order of the functions arguments in the arrays in
pdp should be from left to right in the command function argument list.

The function exec looks at the command field in S and determines which
DataCube function to call. It then unpacks the data in pdp and calls the
function with pdp's data as arguements. The results from the function call are
packaged into a new dqDataPackage and this dqDataPackage is returned by
exec. The ExecutionCode ec (the second argument to exec) must be set before
exec returns. This parameter describes the result of the DataCube function call.

Return data from the exec function

ExecutionCode is an enumerated type with enumerations of SuccessNoReturn-
Data, FailureNoReturnData, NoReply, SuccessWithReturnData, and Failure-
WithReturnData. If the function call does not return any data setting ec to
SuccessNoR.eturnData or FailureNoReturnData will return just the Execution-
Code to the client. This way the client can know that the command has com-
pleted and what the status of its completion was. Alternately ec can be set to
NoReply. When ec is set to NoReply the client receives no return information
from the server and thus does not know when the command is finished exe-
cuting. In all three cases (SuccessNoReturnData, FailureNoReturnData, and
NoReply) no dqDataPackage is returned to the clients; at most an execution
code is returned. Since no dqDataPackage is sent to the client one does not
need to be returned by exec. Since exec returns a reference to a dqDataPackage
you can simple returned a dereferenced bogus pointer to a dqDataPackage (A
dereferenced NULL pointer is recommended). Note, setting ec to NoReply is
the most efficient case since no transmission to the client occurs.

When a function needs to return information to the client it sets the ec
to SuccessWithReturnData or FailureWithReturnData. In this case a dqDat-
aPackage needs to be constructed containing the return data and returned by
exec. Note that exec returns a reference to a dqDataPackage and therefore the
returned dqDataPackage should not be a local variable to exec. Furthermore,
delete will be called on the returned dqDataPackage so it should be created by
new (it should not be a static or a member of an array).

45

Example of execDQnew
Here is what the execution class execDQnew could look like and how it can be
implemented.

class execDQnew :DQnew(
private:

dqDataPackage& CallFuncl (dqDataPackage& dp, ExecutionCode& ec);
dqDataPackage& CalIFunc2 (dqDataPackage& dp, ExecutionCode& ec);

public:
execDQnew4;
int Scheduable (coust dq..server..command command) (return true;}
fDQnewCommand ((const Schedltem& S) coast I

return ((command > DQnewFirst) && (command < DQnewLast));

dqDataPackage& exec (const Schedltem& S, ExecutionCode& ec);

dqDataPackage& execDQnew :: exec (coast Schedltem& S,
ExecutionCode& ec) const{

switch (S.command) f
case DQnewFuncl: return CallFuncl (*(S.pdp), ec);
case DQnewFunc2: return CallFunc2 (*(S.pdp), ec);

dqDataPackage& execDQnew ::CalIFuncl (dqDataPackage& dp,
ExecutionCode& ec){

assert (dp.size (1, 0, 0, 0));
ec: = NoReply;
Fundl (dp.Data (0));
dqDataPackage* pdp = (dqDataPackage*) NULL;
return *pdp; //Returned dat a isn't used so just der'eference NULL

dqDataPackage& execDQnew :: CallFunc:2 (dqDataPackage& dp,
ExecutionCode& ec){

assert (dp.size (0, 1, 0, 1));
ec: = SuccessWithReturnData;
dqDataPackage* pdp = new dpDataPackage;
int. &Data = new int [1]; //Array is expected, not "new min'
pdp-'.et.4ata (1, aData);
aData [01 = Func (dp.xvclIData (0), dp.xvh (0));
return *pdp;

46

Connecting execDQnew to the server

To connect execDQnew to the server the definition of the executor class will need
to be modified. This class is defined in $DQ.SERVER.HOME/lib/src/server in
the files executor.H and executor.C. The executor claws needs to be modified so
that it inherits execDQnew as a protected base. Modify the Scheduable member
function of executor so that it returns true when its current definition would
return true and execDQnew's Schedulable function returns true. Finally modify
executors exec function to call your exec function if execDQnew's fDQnewCom-
mand function returns true.

Example of executor

If the old definition of executor base classes were defined by:

class executor :
protected execS,
protected execGRAPH {

The new definition would be:

class executor:
protected execS,
protected execGRAPH,
protected execDQnew {

The exec function would change from:

dqDataPackage& executor::exec (const Schedltem& S, ExecutionCode& ec) {
if (WScommand (S)) {

return execS::exec (S, ec);
} else if (fGRAPHCommand (S)) {

return execGRAPH::exec (S, ec);
)else{f

fsLogFile < "Bad Comand: " < endl;

To:

dqDataPackage& executor::exec (const Schedltem& S, ExecutionCode& ec) {
if (WSCommand (S)) {

return execS::exec (S, ec);
else if (fGRAPHCommand (S)) {
return execGRAPH::exec (S, ec);

} else if (fDQnewCommand (S)) {

47

return execDQnew::exec (S, ec);
}else {

fsLogFile < "Bad Com-and: " < endl;

The Schedulable function changes from:

int executor :: Scheduable (const dq.server-command command) const {
return (execS::Scheduable (command) &&

execGRAPH::Scheduable (command) &&
I

To:

int executor :: Scheduable (counst dq.server.command command) counst {
return (execS::Scheduable (command) &&

execGRAPH::Scheduable (command) &&
execDQnew::Scheduable (command));}

Adding to the client class

After the server side changes have been made the client class needs to be mod-
ified so that programmers can use it to call the new functions on the server.
To do this create a class whose name is client with the name of your new Dat-
aCube class appended to it, clientDQnew in this case. This class should have
all the members of the DataCube class that are to be distributed (i.e. Funcl
and Func2). Your class cientDQnew should virtually inherit client-base as a
protected base and should be inherited by the class client as a public base. To de-
clare clientDQnew should include SDQ.SERVERHOME/include/client-base.H.
To change the declaration of the clas client you need to modify the file client.H
in SDQ.SERVERHOME/include.

Each of the functions in clientDQnew (i.e. Funcd and Func2) should package
their arguments into a DataPackage (not a dqDataPackage) and call sendcomm
(a member function of client.base) to send the appropriate dq.server.command
and the DataPackage to the server. If no arguments are being sent to the server
no DataPackage needs to be constructed and sendcomm can be called with only
the dq.server.command.

After sendcomm is called there are three possibilities.

"* No reply will be returned by the server because the exec function returned
an ExecutionCode of NoReply.

"* An execution code will be returned by the server but no data is returned.

48

This is the result of the exec function returning SuccessNoReturnData or
FailureNoReturnData.

* An execution code will be returned along with a DataPackage. This is
from the exec function returning SuccessWithReturnData or FailureWith-
ReturnData.

No reply is made by the server

In this case the client needs to do nothing after it calls sendcomm. It can simply
return.

ExecutionCode returned by server, but no DataPackage

If the command needs to wait for an ExecutionCode to be returned by the
server then it should call the recvcomm member function of client-base with no
arguements. This function will wait for the server to send an ExecutionCode
and will return the ExecutionCode to the caller. If the function was called
while a sequence is being defined this recvcomm will return NoReply, otherwise
it should return SuccessNoReturn Data or FailureNoReturnData.

ExecutionCode and DataPackage returned by server

If a command needs to wait for both an ExecutionCode and a DataPackage
to be returned by the server it should call the recvcomm member function of
client-base with an DataPackage as an argument. If the DataPackage passed
to recvcomm is empty (i.e. the size of each of its arrays is 0) then memory
will automatically be allocated for each of its internal arrays and the return
data from the server will be written into it. If the DataPackage is not empty
then it is assumed that it is the same size as the return data from the server.
If this is not the case an assertion will cause the client to exit. Any data in
the DataPackage will be written over by the data received from the server. If
the function is called while a sequence is being defined recvcomm will return
NoReply and nothing will be written into the DataPackage.

Example of the modified client class

class clientDQnew : protected client-base {
public:

clientDQnew 0;
void Funcl (int i);
int Func2 (const xvdq<unsigned char, 1>& xvcl, const xvHist& xvh);

49

/

Our old client clau definition was:

class client : public clientcolorhist,

The new definition becomes:

class client : public clientDQnew, public clientcolorhist, ...

Here is the implementation of the functions Funcd and Func2.

void clientDQnew :: Funcl (int i) {
DataPackage dp;
int* &Data = new int [11; //Array is ezpected, not "new int"
aData [0] = i;
dp.set-data (1, aData);
sendcomm (DQnewFuncl, dp);

int clientDQnew :: Func2 (coust xvdq<unsigned char, I>& xvcl,
coust xvHist& xvh) {

DataPackage dp;
dp.set-data (1, &xvcl);
dp.set-data (1, &xvh);
sendcomm (DQnewFuncl, dp);
dp.Release.xvcl 0; //Dont let dp's destructor delete this
dp.Release.xvh 0; //Dont let dp's destructor delete this
int. aData = new int [1]; //Array is ezpected, not "new int"
dp.set-data (1, aData);
assert (recvcomm (dp) == SuccessWithReturnData); //Altoays succeed
return aData [01;

Compiling tips

When compiling it is useful to compile with the -g (debugging) option, and
to make sure that NDEBUG is not defined. Defining NDEBUG (usually with
-DNDEBUG option on the compilation command line) speeds up the server
by removing assertions made with the assert macro. However, these assertions
flag exceptional conditions and are useful when debugging. No assertion in the
server will ever be flagged in correct code, even it the code is given incorrect
input, therefore they are not needed after a program is debugged.

50

Chapter 3

The DataPackage Container
Class

Overview

This is a class for packaging data for transmission across the network. It
stores arrays of int's, xv<unsigned char, 3>'s, xv<unsigned char, 3>'s, and
xvHists. With the CSsocket claw DataPackage's can be sent and received across
sockets. Another clas, called dqDataPackage has the exact same functions ex-
cept that it contains arrays of dqxv<unsigned char, 3>'s, dqxv<unsigned
char and 3>'s rather than xv<unsigned char, 3>'s, xv<unsigned char and
3>'s. It is legal to receive a dqDataPackage when a DataPackage was sent and
vice-versa.

The data stored in this clas is:
hit Sizepxvcl; //Size of pzucl armyv
xv<unsigned char, 1> *pxvcl; //Array of I band images
mit Sizepxvc3; I/Size of pmvcS array
xv<unsigned char, 3> *pxvc3; //Array of S band images
int Sizepxvh; I/Size of pzih array

xvHist *pxvh; //Array of kistograms
int Sizep; I/Size of p arramy
int* p; //Array of integers

Member functions

* void clear 0;
Delete all arrays and set their sizes to zero.

51

"* int NumOfint 0 const

Return the number of elements in the integere array.

"* int NumOfxvHist () const

Return the number of elements in the histogram array.

"* int NumOfxvcl () const

Return the number of elements in the one band image array.

" int NumOfxvc3 () const

Return the number of elements in the three band image array.

" int empty 0 counst

Return if all arrays in the DataPackage are empty.

"* int size (const int .Sizep, coust int .Sizepxvcl, coust int .Sizepxvc3,
const int _Sizepxvh) const

Return true if the size of each array is the same as that specified in the
arguments. If an argument is- I then ignore that field.

"* int* pData 0 const

Return the integer array, but do not remove the array from the DataPack-
age like release-int does.

"* xvHist, pxvhData () coust

Return the histogram array, but do not remove the array from the Data-
Package like release.xvh does.

"* xv<unsigned char, I>* pxvclData () const

Return the one band image array, but do not remove the array from the
DataPackage like release.xvcl does.

"* xv<unsigned char, 3>. pxvc3Data 0 counst

Return the three band image array, but do not remove the array from the
DataPackage like release.xvc3 does.

"* int& Data (const int i) counst

Return the ill element in the integer array.

"* xvflist& xvhData (const int i) counst

Return the ill element in the histogram array.

"* xv<unsigned char, 3>& xvc3Data (const int i) const

Return the ilh element in the one band image array.

52

"* xv<unsigned char, 1>& xvclData (const int i) const

Return the ih element in the three band image array.

"* void release-int 0
Return the integer array and remove any internal pointers to it do that
when the DataPackage's destructor is called the array is not deleted.

"* void release.xvh ()
Return the histogram array and remove any internal pointers to it do that
when the DataPackage's destructor is called the array is not deleted.

"* void release-xvcl ()
Return the one band image array and remove any internal pointers to it do
that when the DataPackage's destructor is called the array is not deleted.

"• void release.xvc3 0
Return the three band image array and remove any internal pointers to
it do that when the DataPackage's destructor is called the array is not
deleted.

"* void set-data (const int .Sizep, int* .. p)

Delete any currently stored integer array and replace it with the given
integer array of the given size.

"* void set-data (const int -Sizepxvh, xvHist* _pxvh)

Delete any currently stored histogram array and replace it with the given
histogram array of the given size.

"• void set.data (const int .Sizepxvcl, xv<unsigned char, 1>* _pxvcl)
Delete any currently stored one band image array and replace it with the
given one band image array of the given size.

"* void set-data (const int _Sizepxvc3, xv<unsigned char, 3>* .pxvc3)

Delete any currently stored three band image array and replace it with
the given three band image array of the given size.

"* int TransferSize 0 const
The number of bytes required to transfer a datapackage over the network.
Useful for specifying the buffer size of a socket.

"• const CSsocket& operator< (const CSsocket& CS,
const DataPackage& dp)

Transmit a DataPackage to over a socket. When xv classes are transmitted
only their height width and the imagedata is sent, map data, comments,
and other fields are not transmitted. The transmission format is:

53

Sizep, Sizexvcl, Sizexvc3, Sizepxvh,

pxvcl [O..Sizexvcl].x-inax, pxvcl [O..Sizexvcl].y-zmax,

pxvc3 [O..Sizexvc3].x..max, pxvc3 [0. .Sizexvcl].y..max,

p [0. .Sizep]
pxvcl fO..Sizexvcl].imagedata,
pxvc3 [O..Sizexvc3].imagedata,
pxvh [0. .Sizexvh] .imagedata

*const CSeocket& operator> (const CSsocket& CS,
DataPackage& dp)

Read a DataPackage from a socket, but do not extract the data from the
socket.

*const CSsocket& operator> (const CSsocket& CS,
DataPackage& dp)

Read a DataPackage from a socket.

54

Chapter 4

Using the dq-global Base
Class For DQ Applications

Intro

All classes that use the datacube should virtually inherit the class dq-global.
This class provides functions that make paths between common elements (for
example a path from the digicolors DC to memory, or from memory to AB's
crows point switch), allocate memory from the AM devices (thus insuring that
functions will not overwrite eachothers memory), and keep track of the last
function to use LUT's, DAC's, and other elements with expensive state settings
(to avoid redundent loadings of LUT's and the such).

Compiling with dq-global

The application must include dq-global.H from $DQ.SERVERHOME/include
and link with libdq-bmse.a from SDQSERVEILHOME/Iib.

Keeping track of the last user of an element

" int GetNewUserID 0

Ask for an ID to identify yourself as an element user. Typically each clas
will have its own ID.

"* void UseElem (const int UserlDji, const DqIPDev olPDevain,
const DqEnum eElem-in,
coust int ElemOtherAttrib-in = 0)

Announce that you are going to use an element, to identify the element
give the DqIPDev the element is on, the elements DqEnum, and use

55

another integer to specify any other attributes of the element. It is wise
to carefully document what these three parameters are for any elements
that will be tracked. Suggested conventions are:

- Elements that do not need a ElemOtherAttrib-in field for specifica-
tion should not provide one (i.e. use the default of 0 for this discrip-
tor).

- Cross point switch selections should just reserve the whole cross point
switch.

- Multiplexer selections should reserve the multiplexer.
- Reserve APNDLY.SRCN for the AP NMAC surfaces AP._NMAC8,

APNMAC4A, and APNMAC4B.

- LUT's should specify their bank in ElemOtherAttrib-in.

- calls to dclnitADCFormat should reserve DC.ADC.
- calls to dclnitDACFormat should reserve DCDAC.

* int GetElemUser (const DqIPDev oIPDev.in, const DqEnum eElemin,

const int ElemOtherAttrib-in = 0)
Return the ID of the last function to use this element.

• int UnmodifiedElem (const int UserID-in, const DqIPDev oIPDev.in,

const DqEnum eElem..in,
const int ElemOtherAttrib-in = 0)

Return true if UserID-in was the last function to use this element.

* int GetNewUserID 0
Return a new user ID. Typically classes call this in their constructor to
get an ID that they will use throughout their existance.

Memory allocation

The suggested way to perform memory allocation is: Any surfaces that will
not be moved or deleted during the life of a class should be allocated with
allocate in the classes constructor. After all constructors are called in a class
hierarch allocate should never be called again. After initialization any function
that needs a temporary surface should use DupMemSurf with FreeSpaceLowX
and FreeSpaceLowY to make a surface, and that surface should be considered
unstable after the function returns.

Memory allocation is done by requesting rectangles from an AM memory.
Rectangles are allocated starting in the upper left corner of a 2048 x 2048
surface and proceeding from left to right and then from top to bottom.

56

" DqSurf allocate (coast int mem, const int SizeX, conast int SizeY)

Return a rectangle from memory number mem (0-6) of the specified size
with the surfaces allignment point set such that the processing rectangles
upper left corner is at (0, 0).

" DqSurfallocate (const int mem, coast DqRect tRect)

Return a rectangle from memory number mem (0-6) of the specified size
with the surfaces allignment point set such that the processing rectangles
upper left corner is at (0, 0).

"* int ClearView (coast int mem, const DqQByte qColor) const

Clear an entire AM memory to a given color.

"* int RecommendBlockSizeX (const int mem) const

Return the largest width a rectangle can be without having to move to
the next row in the memory map.

"* int RecommendBlockSizeY (const int mem) const

Return the largest height a rectangle can be without having to increase
the height of the current row in the memory map.

"* int FreeSpaceLowX (const int mem) const

Return the upper left corner of the memory that is unused by the memory
map. This can be used to store temporary results.

"* int FreeSpaceLowY (const int mem) coast

Return the upper left corner of the memory that is unused by the memory
map. This can be used to store temporary results.

"* DqSurf DupMemSurf (const int mem) const

Return a duplicate of the surface that covers this memory. Use this with
FreeSpaceLowX, FreeSpaceLowY to make temporary surfaces.

Global surfaces for acquisition and display

"* DqSurf oDCAcqSrcSurf

This is the acquisition source surface on the digicolor. It is initialized to
be DCADC and of size 512 x 480.

"* DqSurf oDC.)spSurf.Ovly

This is the acquisition source surface on the digicolor. It is initialized to
be DC.OVLYMEM and of size 512 x 480.

57

"* DqSuwf oDC.DspSurLDAC

This is the acquisition source surface on the digicolor. It is initialized to
be DCIDAC and of size 512 x 480.

" DqSurf aoDC.DspSurf [2]

This array contains the above display surfaces oDCDspSurfOvly and
oDC-DspSurf.DAC. It can be indexed with the enumerated types Ovly
and DAC.

Initialization

The constructor creates the standard system, and finds all IP devices. Then it
initializes the DigiColor surfaces oDCiDspSurfOvly oDCDspSurfiDAC aoDCDspSurf
and oDC.AcqSrcSurf. Finally it clears the memory map and element usage ta-
bles.

Debugging functions

* void PrintRect (const DqSurf Surf) const

This function prints out various information about a surface includint
what device it is on and what its processing rect is.

* void PrintRect (const DqRect tRect) const

This function prints out the corners of a DqRect.

* int RectContained (const DqRect tBig, const DqRect tSmall) const

Is the DqRect tSmall contained completely inside tBig.

Access to IP devices and the system

"• DqSystem oSystem () const

"* DqIPDev oDc 0 const

"* DqIPDev oAb 0 const

"* DqIPDev oAu 0)const

"* DqJPDev oAs 0 const

"* DqIPDev oAg 0 const

"* DqIPDev oAp 0 const

"* DqIPDev oAm (const int Mem) const

58

Referencing memory

Memory may be referenced in three ways, by its DqIPDev, by its index (The
i'th AM device has index i) or by a surface residing in it.

"* DqIPDev Index2Mem (conast hnt Index) coast

Convert from a memory index to a DqIPDev.

"* hit Mem2lndex (const DqIPDev oMem) coast

Convert from a DqIPDev to an index.

"* ht Surf21ndex (coast DqSurf oSurf) coast

Convert from a surface to an index.

"* DqIPDev Surf2Mem (coast DqSurf oSurf) coast

Convert from a surface to a DqIPDev.

Entry and exit points on AM devices

These functions return the entry point [AB-OPO - AB.OP5] and exit points
[DQJMX0 - DQJMX5] of the AM devices.

"* DqEnum MEMOUT (coast int Index) coast

"* DqEnum MEMOUT (coast DqIPDev oMem) coast

"* DqEnum SURFOUT (coast DqSurfoSurf) coast

"* DqEnum MEMIN (coast hit Index) coast

"* DqEnum MEMIN (coast DqIPDev oMem) coast

"* DqEnum SURFIN (coast DqSurfoSurf) coast

Connections to and from memories

These functions provide connections to and from memories. Only if surface is
specified it is attached to the appropriate XMT or RCV port. Only if shrinkage
or expansion is specified are the shrinkage or expansion on the RCV or XMT
ports set.

"* void CPS2MEM (coast DqlPDev oMem,
coast hit shrinkX, coast hit shrinkY) coast

"* void CPS2MEM (coast hit Mem, coast hit shrinkX,
coast hnt shrinkY) coast

"• void CPS2MEM (coast DqIPDev oMem) coast

59

"* void CPS2MEM (count int Mem) count

"* void CPS2SURF (count DqSurf oSurf,
count int shrinkX, count iut shrinkY) counst

"* void CPS2SURF (count DqSurf oSurf) count

"* void MEM2CPS (count DqJPDev oMem, count imt expX,
count jut expY) count

"* void MEM2CPS (count iut Mem, count hit expX,
count hit expY) count

"* void MEM2CPS (count DqIPDev oMem) count

"* void MEM2CPS (count iut Mem) count

"* void SURF2CPS (count DqSurf oSurf, count iut expX,
count int expY) count

"* void SURF2CPS (count DqSurf oSurf) count

"* void SURF2SURF (count DqSurf oSurfFrom, count int expX,
count int expY, count DqSurf oSuri~o,
count jut ShrinkX, count int ShrinkY) count

"* void SURF2SURF (count DqSurf oSurfFrom, count int expX,
count int expY, count DqSurf oSurfTo) count

"* void SURF2SURF (count DqSurf oSurfFrom, count DqSurf oSurf~o,
count int ShrinkX, count int ShrinkY) count

"* void SURF2SURF (count DqSurf oSurfF~rom,
count DqSurf oSurffo) count

Frame Acquisition from the digicolor

Build a path from the ADC on the digicolor to AB'n croespoint switch, a AM
device's memory, or a surface. These functions call the above memory connec-
tion functions and the same rules about attaching surfaces and netting shrink-
age/expansion apply except where the acquisition source surface is concerned.
If an acquisition source surface is not supplied on will be created.

Before using any of these paths the digicolorn ADC format should be ini-
tialized with dclnitADCFormat. These routines return the acquisition source
surface.

o DqSurf DC2CPS (count int num..bands) count

60

"* DqSurf DC2CPS (const int num..bands,
coust DqSurf oAcqSrc~urf) const

"* DqSurfDC2MEM (coust DqIPDev oBandO, const DqIPDev oBandi,

coust DqIPDev oBand2) const

"* DqSurf DC2MEM (coust DqlPDev oBandO, coust DqIPDe'voBandl,

const DqIPDev oBand2,
const DqSurf oAcqSrcSurf) const

"* DqSurf DC2MEM (const int bandO, coust int bandi,
const int band2) coust

"* DqSurf DC2MEM (const iut bandO, const int bandi,
const int band2, coust DqSurf oAcqSrcSurf) const

"* DqSurf DC2SURF (coust DqSurf oSurfO, conint DqSurf oSurfl,
coust DqSurf oSurf2) coust

"* DqSurf DC2SURF (const DqSurf oSurfO, const DqSurf oSurfl,
coust DqSurf oSurf2,
coust DqSurf oAcqSrcSurf) const

"* DqSurf DC2MEM (const DqIPDev oBandO) coust

"* DqSurf DC2MEM (const DqIPDev oBandO,
const DqSurf oAcqSrcSurf) const

"* DqSurf DC2MEM (const iut bandO) const

"* DqSurf DC2MEM (const int bandO, const DqSurfoAcqSrcSurf) const

"* DqSurf DC2SURF (const DqSurf oSurfO) coust

"* DqSurf DC2SURF (const DqSurf oSurfO,

const DqSurf oAcqSrcSurf) const

Displaying memories with the digicolor
Build a path from the AB's crosapoint switch, a AM device's memory, or a
surface to the digicolors DAC. These functions call the above memory connec-
tion functions and the same rules about attaching surfaces and setting shrink-
age/expansion apply except where the display sink and overlay surfaces are
concerned. If they are not specified they are created.

Return two surfs, the first is in DC..OVLY..MEM and the second is in
DCJ)AC The destination of a pipe using this path is DC..DAC Often you want

61

to clear DC..OVLY-MEM with gsClearView before using the path Init digicolors
DAC format before using the path with dclnitDACFormat The array returned
is not needed for the pipe to operate, create a pipe ending in DCJ)AC, and after
you arm it and clear the DC..OVLY..MEM you can delete the array returned
by this, then go ahead and fire the pipe. When aoDspSurf is supplied to these
functions it is an array containing the DC..DAC and D(IXOVLY-MEM surfs

"* DqSurf* CPS2DC (coast jut NumBands,

coast DqSuda oDspSurfq2]) coast

"* DqSurf* CPS2DC (coast int NumBands) coast

"* DqSurf* MEM2DC (const DqIPDev oBandO, coast DqlPDev oBandl,

coast DqIPDev oBand2) coast

"* DqSurf* MEM2DC (coast DqIPDev oBandO, coast DqIPDev oBandi,
coast DqIPDev oBand2,
coast DqSurfaoDspSurfq2]) coast

"* DqSurfu MEM2DC (coast iut bandO, coast iut bandi,
coast ant band2) coast

"* DqSurf* MEM2DC (coust int bandO, coast int bandi,
coust ant band2,

coast DqSurfaoDspSurf[2J) coast

"* DqSurf* SURF2DC (coast DqSurf oSurfO, coast DqSurf oSurfl,
coast DqSurf oSurf2) coast

"* DqSurf* SURF2DC (coast DqSurf oSurfl), const DqSurf oSurfl,
coast DqSurfoSurf2,
count DqSudfaoDspSurff2]) coast

"* DqSurf* MEM2DC (coust DqWPDev oBandO) coast

"* DqSurf* MEM2DC (coast DqIPDev oBandO,
coust DqSurf aoDspSurf[2]) coast

"* DqSurf* MEM2DC (coast int bandO) coust

"* DqSurf* MEM2DC (coast int bandO,
coust DqSudfaoDspSurf[2]) coast

"* DqSurf* SURF2DC (count DqSurf oSurfO) count

"* DDqSurf* SURF2DC (coast DqSurf oSurfO,

count DqSurf aoDspSurft2l) coust

62

Simple frame acquisition

Grab color or greyscale frames by using the above path functions and dqUp-
dateSurf.

"* void GrabFrame (coast DqSurf ofed, const DqSurf oGreen,
const DqSurf oBlue, coast DqSurf oAcqSrcSurf,
const int Shrinkage = 1, const DqEnum
eType = DQJ)LUNSIGNED, coast int Camera =

-1) coast

"* void GrabFrame (coast DqSurf oGrey, const DqSurf oAcqSrcSurf,
const int Shrinkage = 1, coast DqEuu
eType = DQJ)L-UNSIGNED, coast int Camera =

-1) coast

Simple frame display

Begin a continuous pipe that uses the above path functions to display a color
or grey-scale fram.

* DqPipe Show~rame (coast DqSurf ofed, coast DqSurf oGreen,
coast DqSurf oBlue,const DqSurf aoflspSurf [21,

coast int Expansion = 1) coast

* DqPipe ShowFrame (conat DqSurf oGrey, coast DqSurf aoDspSurf
[2],

coast int Expansion =1) coast

63

Chapter 5

mres: The Multi-Resolution
Image Class

Overview
The mres class uses the DigiColor and MV200 to create a 6 level Gaussian
pyramid from a color or greyscale camera. The high resolution level of the
Gaussian pyramid is grabbed directly from the camera. Further levels in the
pyramid are created by successive blurring and subsampling. The blurring filter
is a flat 2 x 2 averaging filter, but could easily be replaced with any filter of size
up to 4 x 8. The subsampling makes level i half as many points wide and half
as many points high as level i + 1.

Each level in the Gaussian pyramid covers the entire frame allowing any
area in the frame to be accessed at any level of resolution. Since the entire
frame is often not needed, at each level of resolution a subregion of the frame,
called the active region, can be specified. It is recommended that all routines
using the Gaussian pyramid be written to operate only on a levels active region
rather than on the entire level. This way the active region provides a uniform
mechanism for spatial attention.

Member functions

Display functions

* void Project (const

Project the multires pyramid onto display memory by, starting with the
lowest level of resolution, and succesively upsampling the active region and
writing it to display memory. If a continuous display pipe from display

64

Level 0 Level I

Level 2 Level 3

Figure 5.1: Foveated pyramid with 4 levels of resolution. The black regions
show the areas covered by a higher level of resolution. Level 0 has the highest
resolution.

memory to the DigiColor is not running call StopDisplay to stop any other
processes display pipe and begin the display pipe.

"* void HighRes () coust

Copy the high resolution level of the pyramid to display memory. If a con-
tinuous display pipe from display memory to the DigiColor is not running
call StopDisplay to stop any other processes display pipe and begin the
display pipe.

"* virtual void StopDisplay0
Free the timing bus from the display pipe and mark the display pipe as
inactive.

"* void StartDisplay0

If the display pipe is not running fire it.

"* void Foveate (const iut x, const int y)
Set the active regions of each level to form a foveated system around the
coordinate (x, y). The number of levels in the pyramid is determined by
SetNumLevels. Each levels active region is a rectangle where level I has a
width of 1/2' that of the entire screen and a height of 1/21 of the entire
screen. Levels active region is truncated at the edge of the screen. See
figure 5.1.

65

Acquisition of highres and muitires images
"* void RunAcqPat () const

Run the pat that grabs a high resolution frame. This does not create a
multiresolution image.

"* void AcqFrame ()
Set the ADC format with dclnitADCFormat to that of the current color
mode and call RunAcqPat. This is the function that should be used by
other classes, it only sets the ADC format if another function has altered
it.

"* void CreateMultiRes (
Create a multires image from the image currently in high resolution mem-
ory. Call this after caling AcqFrame or after writing a frame into level
0's memory with dqWtR~ect to create a multiresolution image.

Surface access

The following operators provide access to the active regions of each level.

"* void operator> (xvdq<unuigned char, 1> axvclOut [)conat
"* void operator> (xvdq<unsigned char, 3> axvc3Out f)const
"* void operator<C (xvdq<unsigned char, 1> axvclln [)coust
"* void operator< (xvdq<unsigned char, 3> axvc3In f)coust

"* void ReadLevel (xvdq<unsigned char, I>& xvc lOut, const hit level)
const

"* void ReadLevel (xvdq<unsigned char, 3>& xvc3Out, const int level)
coumst

"* void WriteLevel (xvdq<unsigned char, I>& xvclln, coust hit level)
conat

"* void WriteLevel (xvdq<unsigned char, 3>& xvc3ln, coust hit level)
const

The folowing routines provide access to the high resolution image.

"* void operator< (const xvdq<unsigued char, I>& xvclln) conat

"* void operator< (const xvdq<unsigned char, 3>& xvc31n) conat

"* void operator> (xvdqcunsigned char, I>& xvclOut) const

"* void operator> (xvdq<unsigned char, 3>& xvc3Out) const

66

Internals

To access the various bands in different color modes use the enumerated type
ColorIndex:

* enum ColorIndex {
iError = -1,
iRED = 0, iGREEN = 1, iBLUE = 2,
iHUE = 3, iSAT = 4, iVALUE = 5,
WY = 6, iC = 7,
iGREY = 8

Key constants are declared in the following enumeration:

* enuin I
NumColorModes = 4,
Numlndices = 9,
NumMemories = 6,
MaxNumLevels = 6,
NumUsedMems = 4

}

"* virtual void SetActiveRegion (const int Level, const DqRect tRect)

Specify a levels active region by providing a rectangle. This effects which
regions of the level will be displayed.

"* virtual void GetActiveRegion (const int level, DqRect& tRect) const

Return a levels active region size in a DqRect.

"* virtual void SetColorMode (const ColorMode _cmColorMode)

Specify a color mode to be cmGREY (1 band) or cmRGB (3 bands).

"* ColorMode cmGetColorMode () const

Return the current color mode.

"* virtual void SetNumLevels (const int _NumLevels)

Specify the number of levels in the pyramid (maximum of 6).

"* hit GetNumLevels () const

Return the number of levels in the pyramid.

67

" DqSurf oDspSurf (const int band) const

Return the surface used for displaying a given band.

" DqSurfoProjSurf (const int band, const int level) const

Return a surface that is a duplicate of the display surface returned in
oDspSurf, but with a different processing rectangle. The rectangle in the
returned surface will cover the area that the given level's active region will
be displayed in.

" DqSurf oLevel (const int band, const int level) const

Return the surface for a given level and a given band in the current color
mode.

" DqSurf& oLevel (const ColorIndex i, const int level)

Return the surface for a given level and a given band in the current color
mode.

" DqSurf oActiveRegion (const int band, const int level) const

Return the surface for a given levels active region in a given band for the
current color mode.

"* DqSurf& oActiveRegion (const ColorIndex i, const int level)
Return the surface for a given levels active region in a given band for the
current color mode.

Compiling

It is recommended that routines that use the mres class be written as a class
that virtually publically inherits mres.

Memory

The Gaussian pyramid uses 4 memories on the MV200. Three for a 24 bit RGB
pyramid, and one for an 8 bit greyscale pyramid. The Greyscale and RGB
levels in the pyramid do not overlap so color acquisition will not destroy an old
greyscale frame and vice versa. See the SetColorMode function for information
on switching between RGB and greyscale acquisition.

The memory for the surfaces in this class is distributed as follows: For each
level the red, green, blue, and grey bands all occupy memories on different AM
devices. Each bands even levels are stored on one AM device while the bands
odd levels are stored on another AM device, see figure 5.2. On the 4 AM devices
the levels are contained within a rectangle of size 768 x 480 where level i has

68

Band Even levels Odd levels
Red AMO AMI

Green AM1 AM2
Blue AM2 AM3
Grey AM3 AMO

Figure 5.2: Storage devices for levels in pyramid

width 512/2i and height 480/2'. The levels distribution within this 768 x 480
rectangle is shown in figure 5.3.

The 768 x 480 rectangle for storage of the levels has been allocated with
dq-global::allocate. Further allocations made with dq.global::allocate will not
overlap this rectangle (see the section on dq-global).

The display memory is a 512 x 480 rectangle in AM4. When a foveated
image is displayed each level's active region is copied to display memory and
a continuous pipe out of display memory to the DigiColor's DAC displays the
memory's contents. This is only a greyscale display and when the color mode
is set to RGB only the green band is displayed.

69

L.CVd 0
•-vdo 3 Level 4

Level 5L~cd 2

Unused

Figure 5.3: Location of levels in an AM device

70

